Lesson 006
 Axioms, Interpretations, and Properties of Probability

Friday, September 22
Precipitation \mid Wind

Probability refers to a numeric value representing how likely a particular event is.

Frequentist Probability

- The numeric value is the long-run proportion of times that an event happens.
- What happens if we repeat an experiment over and over and over (...) and over again?

	5 Flips	$\mathbf{1 0}$ Flips	$\mathbf{5 0}$ Flips	$\mathbf{1 0 0}$ Flips	$\mathbf{5 0 0}$ Flips	$\mathbf{1 0 0 0}$ Flips	5000 Flips	$\mathbf{1 0 , 0 0 0}$ Flips	$\mathbf{5 0 , 0 0 0}$ Flips	$\mathbf{1 0 0 , 0 0 0}$ Flips
Heads	2	6	31	55	252	487	2454	5051	25,029	49,934
Tails	3	4	19	45	248	513	2546	4949	24,971	50,066
Proportion Heads	$\mathbf{0 . 4 0 0 0 0}$	0.60000	0.62000	0.55000	$\mathbf{0 . 5 0 4 0 0}$	$\mathbf{0 . 4 8 7 0 0}$	0.49080	0.50510	0.50058	0.49934

Examples on Probability Interpretation
 What does the probability mean in each of the following cases?

- The probability of drawing a diamond from a deck of cards is 0.25 .
- The probability of rolling a one on a six-sided die is $\frac{1}{6}$.
- The probability that a particular candidate wins the upcoming election is 0.35 .
- The probability that a machined part produced is within specification is 0.999 .
- The probability that an earthquake larger than anticipated hits the region is $\overline{1000000}$.

A biased coin has a probability of heads of 0.75. Which of the following is correct?

Flipping the coin 4 times will result in 3 heads.
$\int 0 \%$
Flipping the coin $4,000,000$ times will result in $3,000,000$ heads.
\int 0\%

If n is the number of flips of the coin, then, as $n \rightarrow \infty$, the number of heads will tend to $0.75 n$.
\square

A sports forecaster uses a model to predict that the probability that a particular team wins their next game is 0.95 ．The team loses the game．Which of the following is true？

The forecaster was incorrect．
〕 0%

The forecaster＇s model was badly calibrated．
\square
Throughout a season，assuming the forecaster makes many predictions，this result will be expected．
\square
The forecaster should probably update the model．
\square

Axioms of Probability

Positivity
$P(A) \geq 0$ for every event A

Think "it is not possible to have a probability less than zero."

Axioms of Probability

Unit Measure

$$
P(\mathcal{S})=1
$$

Think "the probability that something happens is $1 . "$

Axioms of Probability

Additivity

For disjoint $A_{i}: P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)$

Think "the probability of mutually exclusive events adds up."

Suppose a die is rolled. A is the event that a six shows up and B is the event that a four shows up. Which of the following does not follow from the basic axioms?

$$
P\left(A \cup A^{C}\right)=1
$$

\square

$$
P(A \cup B)=P(A)+P(B)
$$

$P(A)+P(B) \geq 0$
\qquad

$$
P(A)=P(B)=\frac{1}{6} .
$$

Suppose that $\mathcal{S}=\{1,2,3,4\}$ and that the probability of each outcome is exactly $\frac{1}{4}$. What is $P(\{2,4\})$?
$\int^{\frac{1}{4}}$

Suppose that A is the event that an even number is rolled, so that $P(A)=0.5$. Further, suppose that B is the event that a two is rolled, so that $P(B)=\frac{1}{6}$. Using the basic axioms of probability directly, what is $P(A \cup B)$?

$$
P(A \cup B)=\frac{4}{6}
$$

$$
P(A \cup B)=\frac{1}{2}
$$

$$
P(A \cup B)=\frac{1}{6}
$$

The basic axioms of probability cannot be used to solve for this probability, directly.

Secondary Properties of Probability

Using the axioms of probability, we can show that ...

- $P\left(A^{C}\right)=1-P(A)$
- $P(\varnothing)=0$
- $P(A) \leq 1$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- $P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)$

The probability that a ball bearing fails during its first month is 0.12 . What is the probability that it does not fail during its first month?
0.88
0.12
\square
0.5
\square
Not enough information to solve this.
\square

A ball is drawn out of a hat at random. The ball is either blue, green, or red, represented by events B, G, and R respectively. We know that $P(B)=0.25$ and $P(G)=0.6$. What is $P(R)$?

$$
P(R)=\frac{1}{3} .
$$

$$
P(R)=0.25 \text {. }
$$

$$
P(R)=0.15
$$

\square

$$
P(R)=0.6 \text {. }
$$

A ball is drawn out of a hat at random. The ball is either blue, green, or red, represented by events B, G, and R respectively. We know that $P(B)=0.25$ and $P(G)=0.6$. What is $P(B \cap R)$?

$$
P(B \cap R)=0.25+0.15=0.40
$$

〕 0%

$$
P(B \cap R)=0.25 \cdot 0.15=0.0375
$$

1

$$
P(B \cap R)=\min \{0.15,0.25\}=0.15 .
$$

$$
P(B \cap R)=0 .
$$

Suppose that $P(A)=0.5, P(B)=0.3$, and $P(A \cup B)=0.75$. What is $P(A \cap B)$?

$$
P(A \cap B)=0.15
$$

$P(A \cap B)=0.05$
10%
$P(A \cap B)=0.3$

$$
P(A \cap B)=0
$$

Your friend is very into a new cryptocurrency. They say that the probability: its price increases tomorrow is 0.40 , its price doesn't change is 0.40 , its price decreases is 0.30 . Which statement is most correct?
If your friend is correct, buying the cryptocurrency has a 0.80 chance of not losing you money.If your friend is correct, buying the cryptocurrency has a 0.70 chance of not losing you money.0\%Your friend is not correct.
$\}$ 0\%If your friend is correct, buying the cryptocurrency has a 0.40 chance of earning you money.0\%

Assigning probabilities is about counting possibilities.

